
Constant Rate Envelope Generators

The algorithms described above produce segments where the

duration exactly matches the specified time. The rate of change for

the segment varies based on the amplitude levels. It is also possible

to implement the envelope segment so that the rate is constant. The

time of the segment will then vary depending on the start and end

levels. Figure 1 shows the difference between the two types.

Figure 1 - Constant Time vs. Constant Rate

2

Note how the durations of the decay and release segments vary as

the sustain level is lowered. For short durations, there is little

perceptible difference between the two types, but as the duration

increases the curves become significantly different.

Constant rate envelope generators are simple and efficient since

increment calculations do not need to be performed on segment

transitions. To implement a constant rate envelope segment, we

calculate the per-sample amplitude increment based on the peak

level. When the current level passes the end level for the segment,

the segment is considered complete. In the following program, we

assume that the sustain level is equal or less than the peak level and

that the start and end levels are zero. This is typical of ADSR

envelopes.

Init()

{

 volume = 0;

 envState = 0;

 atkIncr = peakAmp;

 if (atkTime > 0)

 atkIncr /= (atkTime * sampleRate);

 decIncr = peakAmp;

 if (decTime > 0)

 decIncr /= (decTime * sampleRate);

 relIncr = peakAmp;

 if (relTime > 0)

 relIncr /= (relTime * sampleRate);

}

Generate()

{

 switch (envState) {

 case 0:

 if ((volume += atkIncr) >= peakAmp) {

 volume = peakAmp

 envState = 1;

 }

 break;

 case 1:

 if ((volume -= decIncr) <= sustainAmp) {

 volume = sustainAmp;

 envState = 2;

3

 }

 break;

 case 2:

 if (noteOffSignaled)

 envState = 3;

 break;

 case 3:

 if ((volume -= decIncr) <= 0) {

 volume = 0;

 envState = 4;

 }

 break;

 }

 out = volume * sin(phase);

 if ((phase += phaseIncr) >= twoPI)

 phase -= twoPI;

 return out;

}

Curved envelope segments can be generated by applying a

transform to the linear amplitude value. In the simple case, an

exponential curve can be implemented by generating a normalized

amplitude range of [0,1] and then square the amplitude value and

multiply by the actual peak amplitude.

 out = peak * volume * volume * sin(phase);

Other curves can be implemented using an exponential or log

function, or a lookup table. For a lookup table, we calculate the index

into the table incrementally then retrieve the amplitude from the

table. The table can be initialized with any appropriate curve, and

each segment may contain its own curve. In the following example,

we calculate a dB curve for attack, decay and release. Note that we

explicitly set the first entry to zero since the exponential function can

never produce a value of zero.

4

Init()

{

 envTblLen = 960; // 96 dB range

 atkTable[envTblLen];

 decTable[envTblLen];

 atkTbl[0] = 0;

 decTbl[0] = 0;

 for (index = 1; index < envTblLen; index++) {

 atkTbl[index] = pow(10, (959 – index)/-200);

 decTbl[index] = atkTbl[index];

 }

 envState = 0;

 volume = 0;

 index = 0;

 atkIncr = envTblLen;

 if (atkTime > 0)

 atkIncr /= (atkTime * sampleRate);

 decIncr = envTblLen;

 if (decTime > 0)

 decIncr /= (decTime * sampleRate);

 relIncr = envTblLen;

 if (relTime > 0)

 relIncr /= (relTime * sampleRate);

}

Generate()

{

 switch (envState) {

 case 0:

 if ((index += atkIncr) >= envTblLen) {

 index = envTblLen-1;

 envState = 1;

 }

 volume = atkTbl[index];

 break;

 case 1:

 if ((index -= decIncr) <= 0)

 index = 0;

 volume = decTbl[index];

 if (volume <= sustainAmp) {

 volume = sustainAmp;

 envState = 2;

 }

 break;

5

 case 2:

 if (noteOffSignaled)

 envState = 3;

 break;

 case 3:

 if ((index -= decIncr) <= 0) {

 index = 0;

 envState = 4;

 }

 volume = decTbl[index];

 break;

 }

 out = peakAmp * volume * sin(phase);

 if ((phase += phaseIncr) >= twoPI)

 phase -= twoPI;

 return out;

}

A constant rate envelope generator has the interesting side effect

that the actual decay and release times vary with the peak and sustain

levels. In other words, a louder sound has a longer duration. This

effect is analogous to striking a physical object, such as a drum. A

light tap on the drum produces a soft sound that decays quickly to an

inaudible level. A hard strike produces a sound that is not only

louder, but also has a longer decay. Thus, a constant rate generator is

a good choice for physical modeling synthesis. However, this effect

can create problems when several loud notes are played in

succession using a melodic instrument patch. The long decay time

will likely cause the notes to overlap and the resulting sound may

exceed the maximum amplitude of the system. In any case, the result

is not intuitive and likely unwanted. To avoid this effect, MIDI

keyboard synthesizers usually include a rate scaling value based on

the key velocity. The key velocity is applied to both the peak

amplitude and rate values. By scaling the release rate

proportionately, the resulting sound can maintain a constant release

time for all volume levels. A software synthesizer instrument can

include a similar feature, or we can simply adjust the decay and

release rates with parameters set for each note.

