
Wavetables From Recorded Sounds

The wavetable oscillator shown above uses a wavetable containing

exactly one period of the waveform. However, a wavetable can

contain multiple periods of the waveform. When the wavetable

contains a recorded sound rather than a calculated waveform it always

has more than one period. In addition, the wavetable may have been

recorded at a sample rate different from the playback sample rate.

We can change the pitch of the recorded sound if we use a phase

increment other than 1, just as with single period wavetables. In order

to calculate the phase increment for a desired frequency, we must

know the frequency of the recorded waveform and the sample rate at

which it was recorded. With those two values we can easily calculate

one period of the waveform.

The frequency of a recorded sound could be specified directly, but,

for most wavetables based on recorded sound, the frequency is

specified as combination of pitch class (or keyboard key number) and

frequency deviation in cents (1/100 of a semitone). Using the pitch

number 48 as middle C and A4=440Hz as the reference frequency,

we can calculate the frequency of the wavetable (fw) as follows.

() ()

12

01.057

120012

57

244022440

⋅+−−

⋅=⋅⋅=

centskeycentskey

wf (8.2)

Note that we can use any frequency as the reference frequency so

long as we adjust the pitch number offset appropriately. For example,

if the wavetable uses MIDI key 60 for middle C, we simply change

the offset to 69. Likewise, if we use the frequency for pitch number

zero in place of 440Hz, we eliminate the subtraction of the pitch

number offset.

Applying the rules for exponents we can combine the two

exponential terms in (8.2) together, as shown in the second form of

the equation. However, since the two values for key number and cents

are specified individually, we can just as easily use the first form. In

order to improve performance, we use a table lookup to convert key

to frequency and cents to a multiplier, avoiding the time consuming

exponential calculations at runtime.

Once we know the frequency we can calculate the period of the

waveform in samples. The period length in samples (P) is the time of

2 Wavetable Oscillators

one period (tw) divided by the time of one sample (ts). The time of one

sample is the inverse of the wavetable sample rate (fsw) and the time

of one period is the inverse of the wavetable frequency (fw).

w

w
f

t
1

=

sw

s
f

t
1

=

w

sw

sw

w

s

w

f

f

f

f

t

t
P ===

1

1

 (8.3)

In words, the period of the waveform is simply the sample rate of

the wavetable divided by the frequency of the wavetable. We can also

see this by using the phase increment for playback at the original

frequency. In order to play the wavetable at its original frequency, the

phase increment must be equal to 1. Rearranging the terms gives us

the same result as before.

sw

w

f

fP ⋅
=1

w

sw

f

f
P =

Once we know the period of the wavetable we can calculate the

phase increment as before using the period (P) for table length (L).

Substituting and then refactoring gives us the final equation for pitch

shifting a sampled recording.

s

o
w

sw

f

f
f

f

i

⋅







=

s

o

w

sw
f

f
f

fi
11

⋅⋅⋅=

BasicSynth 3

w

o

s

sw

f

f

f

f
i ⋅= (8.4)

Intuitively, this is correct as it shows the phase increment is the

ratio of the desired pitch to the recorded pitch. When the recorded

sample rate is the same as the playback sample rate, the first factor is

1. Likewise, when the recorded frequency is the same as the playback

frequency, the second factor is also 1. Thus the phase increment is 1

and the result is to playback the wavetable as recorded. An increase in

pitch results in a phase increment greater than 1, while a decrease in

pitch results in a phase increment less than 1.

When writing the code to implement this oscillator, we should pre-

calculate portions of (8.4). The ratio of sample rates and the recorded

frequency will remain invariant for a note and the three associated

factors can be calculated once and stored as a multiplier for the

desired frequency.

frqMult = wavetable.sampleRate;

frqMult /= synthParams.sampleRate;

frqMult /= wavetable.frequency;

phaseIncr = frequency * frqMult;

In addition to multiple periods of the sound, a typical recorded

wavetable will be divided into two or three segments. The first

segment represents the attack of the sound and is played straight

through. The middle segment represents the sustain portion of the

table and is repeated as long as the note is sustained. When a third

section is present, it is played during the note release. If a third

section is not present, the looped portion is played through the

release. By creating a looping section in the wavetable, the length of

the sound is not limited to the recording length. We can extend the

sound indefinitely by looping while still retaining a close

approximation of the original recording.

Because the wavetable loops somewhere in the middle of the

wavetable we cannot simply wrap the phase between the beginning

and end of the table. Instead, we must keep track of the segment we

are playing and only wrap the phase during looped portions of the

sound.

Some sampled sounds are not intended to be looped and will

contain only one segment in the wavetable. Percussion sounds,

4 Wavetable Oscillators

plucked strings, and sound effects are typically played straight from

beginning to end. To handle those sounds, we need a flag to indicate

we should not loop, but continue until we reach the end of the table,

returning zeros after that point. We can do this easily by using a state

variable to indicate how and when to wrap the phase.

The following code shows phase wrapping in the oscillator for this

type of wavetable.

// state:

// 0 = in attack portion

// 1 = in loop portion

// 2 = play to end without looping.

 if (phase < 0)

 phase += period;

 if (state == 0) {

 if (phase >= loopStart)

 state = 1;

 }

 else if (state == 1) {

 if (phase >= loopEnd)

 phase -= loopLength;

 else if (phase < loopStart)

 phase += loopLength;

 }

 else if (state == 2) {

 if (phase >= tableEnd)

 return 0;

 }

The check for phase less than 0 and less than loop start in state 1 is

needed in case the oscillator is modulated and the modulation

amplitude is negative, causing the phase to move backwards. If no

modulation is applied, these tests can be removed.

When the wavetable contains a release section, we will need to

add some kind of event that causes the state to shift to 2 when the

sound is released. This will cancel any looping and cause the sound to

play to the end.

Generating samples is simply a matter of indexing into the

wavetable as before. However, for this kind of wavetable it is good

idea to always use some form of interpolation. Simple rounding of the

index can work for long wavetables, but that would be the equivalent

of requiring samples recorded at a significant multiple of the

BasicSynth 5

synthesizer sample rate (e.g., 96K or 192K). Several forms of

interpolation are possible, including convolution with a sinc function

(See Chapter 10, below). However, the linear interpolation shown

above works well enough for most synthesis systems.

Recorded sounds may also contain two channels (stereo). Several

options are available in that case. We could simply discard one

channel, we could average the two channels, or produce separate

values for left and right. When writing the program for the oscillator

we should calculate both left and right values and then allow the

caller to decide which values to use. The following code shows the

calculation of the sample from the current phase and calculation of

both left and right channel values. The average of the two is returned,

but the caller may retrieve the left and right values separately if

desired. We assume the left channel wavetable always exists and is

used as a monophonic channel if the right channel wavetable is

missing.

int ii = (int) phase;

float fract = phase – (float) ii;

v1 = wtLeft[ii];

v2 = wtLeft[ii+1];

left = v1 + ((v2 – v1) * fract);

if (wtRight) {

 v1 = wtRight[ii];

 v2 = wtRight[ii+1];

 right = v1 + ((v2 – v1) * fract);

 out = (right + left) / 2.0;

} else {

 out = right = left;

}

return out;

