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Sound Bank Instruments 

SF2 and DLS share a common synthesis model. We will call this a sound bank instrument. A 

sound bank instrument uses a collection of wavetables and articulation data to define the 

parameters to the synthesizer. 

Instrument Overview 

The top-level structure of a sound bank instrument is shown below. 
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A wavetable oscillator is used to generate the audio signal, which is then passed through a 

low-pass filter, amplifier and pan control. This is a very generic synthesis structure and can 

potentially support multiple synthesis algorithms, including additive, subtractive, and sample 

playback. Typically, only recorded sound playback is used, implemented using a multi-period 

oscillator with separate transient and steady-state sections. However, a wavetable can be 

calculated using any of the methods shown in the chapter on complex waveforms, and then added 

to a sound bank.  

Each synthesis parameter is a combination of initialization values, internal unit generators, and 

MIDI channel voice and controller values. Four unit generators are available as inputs to the 

synthesis parameters. 

1. Volume EG 

2. Modulation EG 

3. Vibrato LFO 

4. Modulation LFO 

Note that DLS1 does not include the modulation LFO. Instead, the Vibrato LFO can be used 

as either a frequency control and/or an amplitude control, with the appropriate scaling unit for 

either frequency or amplitude. 

Envelope generators have the form shown below. 
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The EG is a constant-rate type with the peak output normalized to [0,1]. Sustain is specified as 

a percentage of peak output. Rates are specified in time cents (explained below). DLS1 does not 

include the delay or hold segments, using a typical ADSR instead, and the two values are set to 0.  



LFO generators are sine wave oscillators, normalized to [-1,+1], with the output passed 

through a gate. 
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Wavetable Selection 

Wavetable selection is made based on a combination of MIDI values. 
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A sample may span multiple key and/or velocity values, indicated by low-key, high-key, low-

velocity, and high-velocity settings in the sound bank. The range of notes is called a zone or 

region. When a sound bank instrument contains multiple zones that match a key and velocity 

combination, the synthesis structure shown above must be replicated for each zone and the 

outputs summed to produce the final amplitude value.  

The wavetable may be looped or non-looped. For a non-looped table, the table is scanned once 

from beginning to end. For a looped table, the portion of the table prior to the loop start point is 

played through once, then the oscillator cycles over the samples between loop start and loop end. 

The same sample data may be used for different zones, and may have different start and end 

loop points for each zone. 

Stereo, or other multi-channel recordings, are produced by playing multiple zones with each 

zone panned appropriately. This allows for simulated stereo as well as a stereo recording. Note 

that this makes all wavetables single channel inherently, and is different from the interleaved 

samples found in WAV files. This is to be expected since single channel wavetables are required 

if the wavetable phase increment is to work properly. 

Pitch Control 

The Pitch parameter is set from the combination of values shown in the following diagram. 
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Parameters in labeled rectangles indicate MIDI source values. Parameters in ovals are taken 

from the sound bank file. The note-on key value is used to scale the envelope hold and decay 

rates. The note-on velocity is used to scale the envelope attack rate. The final pitch value is the 

sum of six source values: 

1. Note on key 

2. Pitch bend modified by pitch bend sensitivity (RPN0) 

3. Coarse tuning (RPN2) 

4. Fine tuning (RPN1) 

5. Modulation envelope generator 

6. Vibrato LFO 

7. Vibrato LFO modified by modulation wheel (CC #1) 

8. The calculations for sample rate ratio and wavetable pitch are explained in detail 

below. 

Volume Control 

The Volume parameter is set from the combination of values shown in the following diagram.  
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The final volume value is the sum of seven source values: 

1. Initial Attenuation 

2. Note on velocity 

3. Channel volume (CC #7) 

4. Expression controller (C #11) 

5. Volume envelope generator 

6. Volume LFO 

7. Volume LFO modified by modulation wheel (CC #1) 

Filter Control 

The Filter parameter is set by the values shown below.  
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The final frequency is the sum of the source values: 

1. Initial Frequency 

2. Modulation Envelope 

3. Modulation LFO  

4. Modulation LFO scaled by modulation wheel (CC#1) 

Panning Control 

Panning is set by the sum of the MIDI pan control and the instrument specific panning. 

Modulators 

The input values to the parameters shown in the diagrams above can be generalized. When a 

value is the result of scaling a normalized source, the value is defined as a modulator. The general 

structure of a modulator is shown below. 
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The transform is used to convert raw values to the appropriate scale. A modulator n defined as 

a function M(n) multiplies the input source (sn), scaling amount value (an), and control source 

(cn), and applies the transform function T(x).  

 nnn casTnM )(  

The Pitch, Filter, Volume and Pan parameters can be defined as the sum of one or more 

modulators. This generalizes the definition of the synthesis instrument since the modulator may 

be an initialization value, the output of another generator, or a MIDI channel value.  

Modulators also include a destination identifier, indicating which unit generator should 

receive the output value. All modulators for a given destination must use the same units for the 

scale value and are summed to produce the parameter value for the unit generator. 

Some input source values are inherent in the MIDI protocol and are required to be 

implemented. The internal LFO and EG units also have some implied connections. These are 

shown in the following table. 

 

Source Destination Use 

NONE Any The source is considered to have a 

value of 1. This is used to supersede 

the default initialization value on a 

unit generator. 

KEY PITCH, EG1, EG2 MIDI note-on key value. This is 

applied to oscillator frequency, 

envelope decay rates, and used to 

select the wavetable(s). 

VELOCITY VOLUME, EG1, EG2 The MIDI note-on velocity value. 

This value is applied to volume and 



envelope attack rate scaling, and 

used to select the wavetable(s). 

PITCHWHEEL PITCH MIDI pitch wheel value (CV 

message 12). Typically applied to 

the pitch. The scaling value is taken 

from RPN0. 

LFO1 PITCH or VOLUME The oscillator can be used for either 

vibrato or tremolo. For vibrato, the 

scaling value is in pitch cents. For 

tremolo, the scaling value is in 

centibels. The default is to use LFO1 

for vibrato. 

LFO2 VOLUME or FILTER A second LFO. Typically, this is 

applied to volume or filter 

frequency. DLS1 does not include 

this generator. 

EG1 VOLUME Volume envelope generator.  

EG2 PITCH or FILTER Modulation envelope generator.  

MODWHEEL LFO1, LFO2 MIDI modulation wheel (CC #1). 

Applied as a control to the level of a 

LFO. 

VOLUME VOLUME MIDI channel volume (CC #7). 

Transformed to a normalized 

concave curve, scaled to cB and 

added to the volume level. 

PAN PAN MIDI pan (CC #10). Scaled and 

added to the pan value. 

EXPRESSION VOLUME MIDI expression (CC #11). 

Transformed to a normalized, 

concave curve, scaled to cB and 

added to the volume level. 

REVERB REVERB MIDI reverb send (CC #91). 

CHORUS CHORUS MIDI chorus send (CC #93). 

RPN0 PITCHWHEEL Pitch wheel sensitivity. Applied as a 

control to the pitch bend modulator. 

RPN1 PITCH MIDI fine tune (cents). Added to the 

MIDI note-on key value to adjust the 

oscillator frequency. 

RPN2 PITCH MIDI course tune (semi-tones). 

Added to the MIDI note-on key 



value to adjust the oscillator 

frequency. 
Because of the generic nature of modulators, it is theoretically possible to apply any input 

source to any destination, provided the scaling value is set to the appropriate units for the 

destination. The scale is in pitch cents when applied to pitch or filter, and centibels when applied 

to volume, time cents when applied to an EG rate, etc. However, some connections are not 

meaningful. For example, the envelope rates are applied at note start time and changing them 

with a performance controller while the note is playing may have no effect. 

By defining all parameters as modulators, the program to implement the synthesizer can be 

defined as a loop that executes each modulator and the evaluates the oscillator, filter and 

amplifier. However, modulators are conceptual, and it is not necessary to implement all 

synthesizer functions with modulators. For example, a source or control of NONE sets the 

respective input value to a constant of 1. When both source and control are set to NONE, the 

scale is an initialization value for the destination. The output of these modulators cannot change 

during sound generation and thus only need to be evaluated when the note starts. The best 

implementation is to store these modulators directly into the unit generators. For the example 

programs we will consider any parameter, whether initialization or dynamic, to be represented by 

a modulator. 

Frequency Values 

The frequency of a recorded sound could be specified directly in the sound bank, but, for most 

wavetables based on recorded sound, the frequency is specified as combination of pitch class (or 

keyboard key number) and frequency deviation in cents (1/100 of a semitone). A frequency is 

calculated from a MIDI key number and pitch cents by: 
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The value of 69 represents the MIDI key for A4, which has a frequency of 440Hz. Pitch cents 

have a one-octave range of [0,1200] and a total ten-octave range of [0,12000]. Note that we can 

use any frequency as the reference frequency so long as we adjust the pitch number offset 

appropriately. For example, if we use the frequency for pitch number zero (8.175Hz) in place of 

440Hz, we eliminate the subtraction of the pitch number offset. Applying the rules for exponents 

we can combine the two exponential terms together, as shown in the second form of the equation.  

Pitch cents added to a base frequency are called relative pitch cents, while the entire frequency 

range is called absolute pitch cents. Relative pitch cents can be positive or negative numbers. The 

conversion from semitones and cents to frequency can be done directly using the pow library 

function, or with two lookup tables for pitch and cents, with pitch covering a ten-octave range in 

semitones, and cents covering a two octave range, [-1200,+1200]  

In order to improve performance, we use a table lookup to convert key to frequency and cents 

to a multiplier, avoiding the time consuming exponential calculations at runtime.  

Given a MIDI key number and a detune or modulator value in cents, the code to calculate 

frequency directly is: 

 

frq = 440.0 * pow(2.0, ((100.0*(key–69))+cents) / 1200.0); 

 

For relative cents, the tables are calculated as: 

 

for (n = 0; n < 2400; n++) 



 relPC[n] = pow(2.0, (n-1200.0)/1200.0); 

for (n = 0; n < 128; n++) 

 frqST[n] = 440.0 * pow(2.0, (n-69)/12.0); 

 

We use 128 instead of 120 for the semi-tone range since MIDI key numbers have that range. 

In actuality, MIDI key numbers rarely reach to the upper and lower limits, but we include the 

entire range to avoid testing the range during lookup.  

Frequency can be calculated using a table lookup by: 

 

frq = frqST[key] * relPC[cents+1200]; 

 

Frequency can be calculated from absolute pitch cents using two tables by: 

 

frq = frqST[pcabs/100] * relPC[(pcabs%1200)+1200]; 

 

Alternatively, we can use a single table covering the entire 10 octave range. That means we 

need a table with 12800 entries. 

 

for (n = 0; n < 12800; n++) 

 absPC[n] = 440.0 * pow(2.0,(n-6900.0)/1200.0); 

 

The lowest frequency in the table is 8.175Hz, and the highest is 13,289Hz. Frequency is 

calculated from key and cents, or absolute cents by: 

 

frq = absPC[key*100+cents]; 

frq = absPC[pcabs]; 

Amplitude Values 

Amplitude values are specified in 10ths of a decibel (centibels or cB). Thus a range of [0,960] 

represents up to 96dB of attenuation. For 16-bit amplitude values, 96dB represents the maximum 

range of possible values. For 24-bit values, the range would extend to 144dB, or [0,1440] 

centibels.  

Values in cB of attenuation are converted to normalized amplitude by: 
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The negative sign in the exponent is needed because the cB value represents attenuation. In 

other words, a value of 960cB should map to 0 (or close to it), and 0cB should map to a 

normalized amplitude of 1. The code to convert cB to amplitude is: 

 

amp = pow(10, cb/-200); 

 

The exponential calculation can be made with a lookup table calculated as: 

 

for (n = 0; n < MAX_CB; n++) 

 ampCB[n] = pow(10, (double)n / -200.0); 

 



The constant MAX_CB is typically 960, but can be set to 1440 to allow the full range for 

single precision float types. When performing a lookup, any value greater than or equal to 

MAX_CB represents maximum attenuation and should return 0. Any value less than 0 should 

return 1.  

Envelope Rates 

Envelope rate values are specified in time cents and are converted to a rate in seconds by: 

12002

tc
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The calculation for tc is the inverse, i.e.: 

rtc 2log1200  

This may seem like a strange way to represent time, but it does have a benefit. First, 

sub-second time values can be specified in integers rather than floating point. The tc value is 

simply a negative number in that case. We could use integers by a linear scaling of the time value 

to a fixed point value, but there is an advantage to using a logarithmic scale. As the envelope rate 

increases beyond 1s, small increments of time become less perceptible. In other words, an 

increase in the attack rate from 1ms to 100ms produces a perceptible change, but an increase from 

5s to 5.1s does not. Consequently, most of a linear range is wasted. Because it is a logarithmic 

scale, the time in seconds between adjacent tc values increases as the time cent value increases, 

and each increase of tc is more likely to be a useful change in rate. Using time cents, a time of 32 

seconds is a tc value of 6000 while a value of 1ms is a tc value of about -12000, resulting in a 

total range of 18,000. Extending the range to [-12000,8000] allows time values up to 100 

seconds, but can still be specified with a short integer. Simple linear scaling with a 1ms resolution 

would be limited to about 32s. 

We can calculate times directly from time cents, or use a table of absolute time cents and 

perform a lookup.  

 

for (n = 0; n < 20000; n++) 

 absTC[n] = pow(2.0,(n-12000.0)/1200.0); 

 

secTm = absTC[tc+12000]; 

 

Envelope rates are modified by the pitch and velocity values. Since higher pitched sounds tend 

to have a shorter decay time, the time can be scaled automatically to simulate this effect. Scaling 

can be applied "full scale" by simply multiplying the key number by the scale factor and adding 

to the initial decay rate. 

 

decay = decay + (key * scale); 

 

Scaling can also be made relative to Middle C: 

 

decay = decay + ((key – 60) * scale); 

 

DLS files use the first form while SF2 files use the second form. 

Attack times tend to be shorter for loud sounds and slightly longer for soft sounds. The 

normalized note on velocity value is used to scale the attack time. 



 

attack = attack + ((velocity/127) * scale); 

Oscillator 

The standard wavetable oscillator uses a wavetable containing exactly one period of the 

waveform. However, when the wavetable contains a recorded sound rather than a calculated 

waveform it almost always has more than one period. In addition, the wavetable may have been 

recorded at a sample rate different from the playback sample rate.  

We can change the pitch of the recorded sound if we use a phase increment other than 1, just 

as with single period wavetables. In order to calculate the phase increment for a desired 

frequency, we must know the frequency of the recorded waveform and the sample rate at which it 

was recorded. With those two values we can easily calculate one period of the waveform.  

Once we know the frequency we can calculate the period of the waveform in samples. The 

period length in samples (P) is the time of one period (tw) divided by the time of one sample (ts). 

The time of one sample is the inverse of the wavetable sample rate (fsw) and the time of one 

period is the inverse of the wavetable frequency (fw). 
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Thus, the period of the waveform is simply the sample rate of the wavetable divided by the 

frequency of the wavetable. We can also see this by using the phase increment for playback at the 

original frequency. In order to play the wavetable at its original frequency, the phase increment 

must be equal to 1. Rearranging the terms gives us the same result as before. 
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Once we know the period of the wavetable we can calculate the phase increment as before 

using the period (P) for table length (L). Substituting and then refactoring gives us the final 

equation for pitch shifting a sampled recording. 
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Intuitively, this is correct as it shows the phase increment is the ratio of the desired pitch to the 

recorded pitch. When the recorded sample rate is the same as the playback sample rate, the first 

factor is 1. Likewise, when the recorded frequency is the same as the playback frequency, the 

second factor is also 1. Thus the phase increment is 1 and the result is to playback the wavetable 

as recorded. An increase in pitch results in a phase increment greater than 1, while a decrease in 

pitch results in a phase increment less than 1. 

To implement the oscillator, we need to calculate a phase increment and then iteratively add 

the increment to the phase for each sample. The phase increment for a multi-period oscillator is: 
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Here,  fsw is the sample rate of the wavetable, fs is the sample rate of the synthesizer,  fw the 

wavetable frequency, and fo the desired oscillator frequency. Intuitively, when the sample rates 

are the same and the frequencies are the same, the phase increment is one, and we playback the 

sample at the recorded frequency. 

The wavetable frequency may be given directly in Hz, but is typically defined by a 

combination of a root key (kr) and a detune amount (d) in cents. The playback frequency for the 

oscillator uses the MIDI key number, adjusted by the MIDI RPN1 (fine tune) and RPN2 (coarse 

tune) values. This is accomplished by adding the coarse tune value (tc) to the key number (k), 

converting to cents, and adding the fine tune (tf). 
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Given each frequency in cents, we can use our pitch cents to frequency conversion tables to 

lookup the two frequencies. The oscillator is then implemented as follows. 

 

oscFrq = frqST[key + coarse] * relPC[fine+1200]; 

wavfrq = frqST[root] * relPC[detune+1200]; 

// OR, using absolute pitch cents table: 

oscFrq = absPC[(100 * (key + coarse)) + fine]; 

wavfrq = absPC[(100 * root) + detune]; 

 

phsIncr = (wavSampleRate / sampleRate) * (oscFrq / wavFrq); 

phase = 0; 

 

for (s = 0; s < totalSamples; s++) { 

 if (phase >= tableEnd) 

  sample[s] = 0; 

 else { 

  sample[s] = wavetable[phase] * volume; 

  phase += phsIncr; 

  if (looping && phase >= loopEnd) 

   phase -= (loopEnd – loopStart) 



 } 

} 

 

This code shows a direct index into the wavetable, truncating the fractional part of the phase 

value. Typically, we will use interpolation of the table in order to minimize quantization errors.  

The looping flag indicates whether the table should be played through once, or sustained by 

looping between the loop start and end points. The part of the table prior to the loop start point is 

always played through once. 

Pitch Modulators 

The frequency of the oscillator for a given sample is the combination of the note frequency and 

any modulators applied to pitch. Modulating a frequency involves multiplying the oscillator 

frequency by a frequency ratio. In other words, the output of a modulator must be converted from 

relative pitch cents to a frequency multiplier.  
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A straight forward implementation multiplies the base frequency by each modulator. But note 

that each factor in the calculation is a power of two,  and thus we can calculate the sum of the 

exponents (modulators in cents) and add to the note pitch in cents without the intermediate 

conversion to frequency.  We can also convert the values for fsw and fs  into a power of two by 

calculating the cents value from the frequencies. The cents value is the logarithm of the 

frequency.  
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The sum of csw, cs, co, and cw can be calculated once at the start of the note and then added to 

the modulator sum (cm) for each sample. Using this form, the incremental phase calculation is 

done by accumulating the modulators in pitch cents and performing one exponential operation per 

sample value. The final value is a wavetable index increment, not a frequency, and represents the 

ratio of the recording frequency to the playback frequency. We will want to use a table lookup for 

the final conversion of pitch cents to phase increment, instead of exponentiation. The size of the 

table depends on the range of pitch shift we need to accommodate. The DLS specification 

requires a minimum of +2/-4 octaves requiring a table with a range [-4800,+2400]. The worst-

case is the full 10 octave range, requiring values to cover [-12000,+12000] cents. 

 

// -4, +2 octaves 

for (n = 0; n < 6200; n++) 

 phsPC[n] = pow(2, (n-4800)/1200); 

 

// -10, +10 octaves 

for (n = 0; n < 24000; n++) 

 phsPC[n] = pow(2, (n-12000)/1200); 

 

Because the table spans a negative to positive range, we need to add an offset to the index 

value. The offset value (4800 or 12000) can be added to the initial cents variable instead of 

adding to the phase increment on each sample. Since the formula for time cents is the same as for 

the conversion from  pitch cents to phase increment we could potentially use the same table for 

both. 

Using cents, the program is faster, but the difference in execution time is dependent on the 

number of modulators. If only one or two modulators are applied to pitch, the difference may be 

negligible. 

Note: The C++ runtime library does not include a log2 function. However, we can define one 

using the formula for logarithm base conversion (logn(x)=loge(x)/loge(n)). The constant ln2 is 

loge(2). 

 

const double ln2 = 0.693147180559945; 

double log2(double n) { return log(n) / ln2; } 

Scale Tuning 

The SF2 specification includes a feature that allows varying the tuning ratio between adjacent 

pitches. Normally, each semi-tone represents an increase or decrease of 100 cents, but, when 

scale tuning is in effect, the amount of change is scaled. With a scale value of 100, pitches are the 

standard 12-tone scale. With a scale of 0, all pitches would sound at the same frequency. 

In simplest terms, scale tuning changes the multiplier for conversion from semi-tones to pitch. 

But this must be made relative to some known pitch. Otherwise, scaling the key number by a 

multiplier less than 100 would move all pitches towards the bottom of the frequency range. What 

we need to do is calculate the difference in cents between the root pitch and the performed pitch. 

We can expand the calculation for oscillator cents as: 
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We change the scale of the pitch by changing the coefficient of the first term to the scaling 

value. The value for ct can now replace (co-cw) in the phase calculation. Note that we don't want to 

scale the detune value (d) because that value adjusts the base frequency of the wavetable to be 

equivalent to the root key.  

The final oscillator code is shown below. For now, we will represent the modulator values 

with function calls, and show the volume level as a single variable. (The transform is not shown.) 

 

Modulator(n) { 

 if (ModDst(n) == PITCH) 

  phsIncr *= relPC[ModValue(n)]; 

} 

 

if (sampleRate != wavSampleRate) { 

 srCents  = (1200 * log2(sampleRate/440)); 

 wsrCents = (1200 * log2(wavSampleRate/440)); 

 phsCents = wsrCents – srCents; 

} else { 

 phsCents = 0; 

} 

oscCents = scaleTune * (key + coarse + (fine*0.01) – root); 

phsCents += oscCents – detune; 

phsCents += 4800; // 6 octave table 

//phsCents += 12000; // 10 octave table 

 

for (s = 0; s < totalSamples; s++) { 

 if (phase >= tableEnd) { 

  sample[s] = 0; 

  continue; 

 } 

 phsIncrPC = phsCents; 

 for (n = 0; n < m; n++) 

  Modulator(n); 

 sample[s] = wavetable[phase] * volume; 

 phase += phsPC[phsIncrPC]; 

 if (looping && phase >= loopEnd) 

  phase -= (loopEnd – loopStart) 

} 



Amplitude Modulators 

The combined amplitude value of modulators is the product of the normalized amplitude values. 

M(n) is a modulator with amplitude as the destination. 
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Since values in cB are already logarithms, we can sum the values, just as we did with 

frequency calculations, and then convert the sum into normalized amplitude.  
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The modulators applied to volume include initial attenuation, MIDI note-on velocity, MIDI 

volume (CC#7), MIDI expression (CC#11), LFO and volume envelope generator. The 

normalized values from these sources are scaled to cB, summed and converted to normalized 

amplitude, and then multiplied by the filter output to produce the final amplitude value. 

MIDI values have a range of [0,127] and need to be scaled and transformed into cB units. For 

volume, the linear input range is transformed to a convex curve and then converted. 
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As we have been doing, we can implement the calculation directly, or use a lookup table. 

 

midiCB[n] = 960; 

for (n = 1; n < 128; n++) 

 midiCB[n] = 200 * log10((127*127)/(n*n)); 

 

The LFO generator varies from [-1,1]. For tremolo, we want the value to be in the positive 

range [0,1] and scaled by cB. 

 

lfoOut = (1 - LFO()) * 0.5 * lfoScale; 

 

Since the output of an envelope generator can be applied to volume, pitch or filter, the 

envelope is usually calculated as a normalized value [0,1] and then scaled by a value in the 

appropriate unit. However, for the volume envelope generator, the scaled value represents 

attenuation, and we must transform the value differently. We must map the maximum envelope 

value to the peak attenuation and the minimum envelope value to maximum attenuation. 



Peak Attn. (pcb)

Max. Attn. (mcb)

EG0 EG1  

Here, pcb is the attenuation at the envelope peak, mcb is the attenuation at the envelope 

minimum, and EGn is the output of the envelope generator at level n. Applying the equation for 

the line gives us the amplitude in cB for any envelope generator output level.  
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Both SF2 and DLS specifications have a fixed scale of [0,960] for volume envelope. We can 

reduce the calculation for cB by substituting a 0 value for peak and 960 for the minimum. 
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Attack rates usually have a convex (exponential) curve. For the attack segment we can simply 

square the output of the envelope generator before converting to cB, but to achieve a linear attack 

ramp will need a more complicated solution. (See below on normalized transfer functions.) 

For DLS files, an envelope sustain level is specified as a percentage of peak output and can be 

set directly on the envelope generator. For SF2 files, the envelope sustain level is specified as an 

increase in attenuation (decrease in volume) applied to the peak level. We calculate the envelope 

sustain level by setting the first equation to the sustain level and solving for the EG level. 
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Setting the peak amplitude to 0 and the minimum to 960, we can simplify to: 
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Combined with the code above, we now have the following for the modulator. 

 

Modulator(n) { 



 if (ModDst(n) == PITCH) 

  phsIncr += ModValue(n); 

 else if (ModDst(n) == VOLUME) { 

  if (ModSrc(n) == EG1) 

   ampVal += 960*(1-EG()); 

  else if (ModSrc(n) == MIDI) 

   ampVal += midiCB[ModValue(n)]; 

  else if (ModSrc(n) == LFO) 

   ampVal += ModValue(n) * (1-LFO()); 

 } 

} 

Normalized MIDI Inputs 

MIDI values applied as modulators are normalized before multiplying with the modulator scale 

value. There are four basic normalization transfer functions, linear, concave, convex and switch. 

Each of these can be inverted. 

The linear transfer function is simply a scaling of the MIDI value to the range [0,1]. The 

switch transfer function is true when the MIDI value is greater than the midpoint. The concave 

curve is the decibel value of the squared MIDI value scaled to the range [0dB,96dB], then 

normalized to a range of [0,1].  
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Note that the function X(n) is undefined for n = 127 and X-1(n) is undefined for n = 0. We use 

1 and 0, respectively in those cases. 

The convex curve is the inverse of the concave curve. 
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All the curves can be calculated from each other by either taking the inverse or reversing the 

end points.  For the case when x=log(0), we initialize the appropriate end-point of each curve 

separately. 

 

posLinear[0] = 0; 

negLinear[0] = 1; 

posConcave[127] = 1; 

negConcave[0] = 1; 

posConvex[0] = 0; 

negConvex[127] = 0; 

posSwitch[0] = 0; 

negSwitch[0] = 1; 

 

for (n = 1; n < 128; n++) { 

 R = n/127; 

 R2 = R * R; 

 V = -20.0f/96.0f * log10(R2); 

// V = 20/96 * log10(1/R2); 

 posLinear[n] = R; 

 negLinear[n] = 1 – R; 

 posConcave[127-n] = v; 

 negConcave[n] = v; 

 posConvex[n] = 1 - v; 

 negConvex[127-n] = 1 – v; 



 posSwitch[n] = R >= 0.5; 

 negSwitch[n] = 1 – posSwitch[n]; 

} 

 

The benefit of using these complicated normalization curves is to provide a linear output while 

still working with centibels of attenuation. The following graph shows how the negative linear 

and convex curve scales the raw MIDI input to decibels of attenuation. A n2 curve is shown for 

comparison. 
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When converted to normalized amplitude, the negative convex curve results in a nearly flat 

amplitude scale. The linear transfer function produces a dB output curve.  
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Unrolling 

The code examples have shown a loop that applies modulators. This is the generalized version 

and is normally used so that modulators matching defaults will supersede the implied connection. 

However, if there are no modulators other than implied modulators, or we always want to apply 

the defaults, we can apply the implied modulators directly in sequence without having to loop. 

Also, MIDI values do not change quickly, relative to the sample rate. If the block size for sample 

rendering is equal to 1ms or less, we only need to read the MIDI controller values once per block. 

 

atten = initAtten  

      + midiCB[velocity]; 

      + midiCB[chnlVol] 

      + midiCB[chnlExpr]; 

pitchWheel = midiIn[chnlPw]; 

modWheel = midiIn[chnlMW]; 

 

for (s = 0; s < totalSamples; s++) { 

    eg1Val = EG1(); 

    eg2Val = EG2(); 

    lfo1Val = LFO1(); 

    lfo2Val = LFO2(); 

    phsIncPC = phsCents  

             + pitchWheel 

             + lfo1Val * (lfoFrqScl + (modWheel*mwPC)) 

             + eg2Val * modFrqScale; 

 

    ampVal = atten 

           + lfo2Val * (lfoAmpScl + (modWheel * mwCB)) 

           + (1 – eg1Val) * 960; 

 

    fltVal = initFilter  

           + lfo2Val * (lfoFltScl+ (modWheel*mwFC)) 

           + EG2() * modFltScl; 

 

    panVal = initPan + midiPan; 

 

    out = FILTER(wavetable[phase]) * ampCB[ampVal]; 

    left[s] = PAN(out,-panVal); 

    right[s] = PAN(out,panVal); 

 

    phase += phsPC[phsIncPC]; 

    if (looping && phase >= loopEnd) 

        phase -= (loopEnd – loopStart) 

} 

 



This technique, known as unrolling a loop, replaces the loop with a series of inline statements. 

It eliminates the modulator loop overhead since we don't have to test the source and destination 

values. Thus, what we give up in flexibility we gain in performance. 

Minimal Implementations 

The synthesis model defined for sound banks is generic, but the SF2 and DLS specifications are 

clearly targeted to a hardware implementation. Both tacitly assume that any number of 

modulators can be evaluated without affecting the speed of sample generation. While most likely 

true for digital circuits, this assumption can create performance problems for a software 

synthesizer where all generators must be run sequentially with their execution interwoven with 

other sequencer operations. The more modulators we execute, the longer it will take to generate a 

sample. Ideally, a software implementation should skip execution of modulators that do not affect 

the sound output. For example, if the EG2 value is not used, or the scale value is specified as 0, 

there is no need to execute the EG2 code or add the value to the pitch and/or volume parameters. 

A simple optimization is to discard any modulators that have a scaling value of 0 as the sound 

bank is loaded into memory. Likewise, if the MIDI input file does not contain any pitch bend or 

modulation wheel messages, we can skip any modulators that use those values as either source or 

control values. 

Unlike a hardware implementation, a software synthesizer can easily support multiple 

instruments. We obviously want to have one instrument that implements all features available in 

the sound bank and is fully compliant with the specification. But we can also have a minimal 

instrument that is optimal for limited cases. A common scenario is one where the sound bank uses 

recorded sounds and does not modify those sounds with the modulation envelope, second LFO, or 

filter, and the MIDI input contains only key, velocity, volume, and pitch bend. We can detect this 

situation when loading the sound bank and MIDI file and automatically select a minimal 

instrument, or simply select this instrument whenever we need fastest execution. In addition, 

volume, panning, reverb, and chorus apply to all notes on the channel. These values can be 

applied at a final mix-down point, rather than in the instrument. 

The modulator evaluation code above is replaced with two simple statements: 

 

phsIncPC = phsCents + pitchWheel + lfo1Val * lfo1Scl; 

ampVal = atten + ((1 – EG()) * 960); 

 

Although this seems quite limited, it will correctly render a large number of sound bank and 

MIDI file combinations. Other modulators can be evaluated if the scaling value is non-zero. We 

can do this by using a set of flags indicating whether or not a modulator should be evaluated. 

 

if (flags & EG1_PITCH) 

 phsIncPC += eg1Val * eg1SclPitch; 

if (flags & LFO2_VOLUME) 

 ampVal += eg2Val * eg2SclVol; 

<< etc. >> 

 



SoundFont File Structure 

A SF2 file is a RIFF file with each chunk representing one of several data records. 

Overall, the SF2 file is similar to a ISAM file structure. 
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DLS File Structure 

A DLS file is a RIFF file with a hierarchical structure. 
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