
1

Chapter X

Sampler Instrument

A sampler is a synthesizer that generates sound by playing recorded

sounds rather than calculated waveforms. The wave file player

instrument described in an earlier chapter is a simple form of sampler.
Unlike the wave player, a sampler has the ability to automatically

select from a set of samples, shift the pitch up and down, sustain the

sound indefinitely by looping, alter the envelope, and apply
modulations, such as vibrato, to the recorded sample. The recorded

sound is typically loaded into a table and scanned in a manner similar

to a wavetable oscillator. This has led to the use of the term wavetable
synthesis for this kind of instrument. Wavetable synthesis originally

referred to a variation of additive synthesis that created a complex

sound by cross fading between multiple wavetables. The confusion of

terminology is unfortunate, but it is now common for a sampler to be
called a wavetable synthesizer. To further add to the confusion, a

digitally recorded sound used by a sampler is referred to as a sample.

This is not the same as the quantized amplitude value that we
normally call a sample, but rather refers to the entire set of samples

that make up the recording. Descriptions of samplers will often make

a distinction between sample and sample data, with the former
referring to the whole recorded sound and the latter referring to the

individual sample values that make up the recorded sound.

Although in principle a sampler can playback any waveform, it is

most often used to emulate traditional musical instruments. Since the
sample contains the complete spectrum of the sound, including any

dynamic properties, we don't need to sum harmonics with separate

envelopes or modulate to create a complex waveform, but simply
copy the sample values to the output device at the sample rate.

However, there are several concerns that complicate a sampler.

2 Sampler

The spectrum of a musical instrument sound will change

depending on pitch, articulation, and loudness. To fully capture the
sound of an instrument, we would need each pitch in the instrument's

range recorded at dynamics from pp to ff, and with different

articulation at each pitch and dynamic. For an instrument with a three

octave range, six different dynamics, and four articulations, we would
need over 3,000 samples. For an orchestra with only 10 different

instruments we might need over 30,000 samples.

Fortunately, we can change the pitch of a sample in the same way
we change the frequency of a wavetable oscillator, i.e., we alter the

increment value used to index through the table. Unlike a typical

oscillator wavetable, a recorded sound has a built-in envelope. When
we change the increment to achieve a different frequency, we also

vary the attack and decay of the sound envelope. For small pitch

changes, the variation in the envelope may not be perceptible. But if

we try and shift the pitch more than a small amount, the envelope will
be significantly altered. Rather than rely solely on the recorded

sound's envelope and volume level, we can apply an envelope

generator and volume level to the sample. This will reduce the need
for a large variety samples to represent volume and articulation

variations.

Pitch shifting will also affect the spectrum. Skipping or repeating
samples is a form of re-sampling and has several potential problems.

If we shift the pitch too far, we can produce alias frequencies and

audible quantization noise. Convolving the sample with a sinc filter

can eliminate much of the problem, but is time consuming and will
alter the timbre of the sound. Stretching samples over too far of a

range, even with filtering, results in samples that sound artificial or

like a low-quality recording, effectively defeating the purpose of a
sampler. Fortunately, since nearby pitches sound about the same, we

can reuse a sample for multiple pitches if we limit the pitch shift to a

small range, usually 2-4 semitones.

Likewise, the changes to the spectrum at different volume levels
and different articulations might be small enough that we can use a

smaller number of samples without a noticeable effect. In some cases,

we can apply a low-pass filter to attenuate higher frequencies,
simulating a softer sound. As with pitch, we might need 2-4 samples

recorded at different volume levels in order to reproduce the natural

BasicSynth 3

variations in the spectrum, but can sometimes get by with only one

sample recorded at a high volume level.
A sound recorded with tremolo, vibrato, or pitch bend, will also

cause a problem during playback. Changing the wavetable increment

will change the vibrato and pitch bend rate along with the pitch. If the

sample is recorded without vibrato, we can apply vibrato with a LFO.
Variable vibrato and pitch bend can be implemented with either an

envelope generator, parameters from a score, or live performance

controller values.
We must also consider varying the duration of the sound. For

percussion instruments, including keyboards, we want the full

duration of the recording, but with the ability to cut-off the sound
before it completes. This can be accomplished easily by using an

envelope generator with a short release segment to fade the sound out

quickly when the note is stopped. However, for wind instruments, we

want to be able to play a sound for any duration. This can be
accomplished by looping over the wavetable, but if we loop over the

whole recording we will reproduce the attack and decay portions of

the sound. The result will sound like a repeated note instead of a
sustained note. One solution is to cut off the attack and decay portions

of the recording and then control the envelope independently.

However, this eliminates the attack transients, often a key part of the
instrument's timbre. For this reason, the sample is divided into two or

more sections. The first section represents the attack, including it's

transients, and is usually played straight through. The second section

represents a typical sustained sound and is looped as long as needed.
A third section can be used for the decay, and would be played

straight through like the attack section, but usually the sampler will

apply an envelope to the sustained portion to produce a variable
decay.

Using these techniques, the sampler will be somewhat less than

ideal, but still very close to the original sound and much more

practical than using thousands of samples per instrument. The
resulting instrument has the same basic structure as the Tone

instrument described earlier, but with a specialized wavetable

oscillator in place of the single-period oscillator.
Two standards for sample data collections are currently in use.

The SoundFont® (SF2) format was developed by E-mu systems and

then released for public use. SF2 is a proprietary format, but has

4 Sampler

become a de-facto industry standard. The Downloadable Sounds

format (DLS) was developed by the MIDI Manufacturers Association
(MMA) and is also available for public use. DLS is typically used by

manufacturers of keyboard synthesizers, but is also used in various

mobile communications devices and software synthesizers.

Both SF2 and DLS are closely tied to the MIDI event protocol. In
fact, the primary purpose of both specifications is to enhance the

MIDI protocol with better note-by-note control of synthesis

parameters. Thus a SF2/DLS sound collection is generally designed
to be used in a MIDI-based synthesizer. The widespread adoption of

MIDI has produced a standard combination of MIDI and SF2/DLS

that has become ubiquitous in both hardware and software
synthesizers. This widespread adoption has resulted in the production

of a large number of both SF2/DLS sample data files and MIDI files

along with software tools for creating both. Incorporating a

synthesizer with these capabilities into a software application allows
immediate use of a large set of readily available sounds and music.

Sound Bank Instrument Overview

Although the two formats are significantly different in file structure,
both are designed around a similar synthesis model and parameter set,
and can be converted back and forth with little to no loss in

information. Thus both formats can be combined into one

representation called a Sound Bank (SB). The top-level structure of a

sound bank instrument is shown below.

Volume

Pitch

Wavetable

Pan

Filter

Figure 1 - Sound Bank Instrument

A wavetable oscillator is used to generate the audio signal, which

is then passed through a low-pass filter, amplifier and pan control.
This is a very generic synthesis structure and can potentially support

BasicSynth 5

multiple synthesis algorithms, including additive, subtractive, and

sample playback. Typically, only recorded sound playback is used,
implemented using a multi-period oscillator with separate transient

and steady-state (loop) sections.

Each synthesis parameter is a combination of initialization values,

internal unit generators, and MIDI channel voice and controller
values. Four unit generators are available as inputs to the synthesis

parameters.

1. Volume EG
2. Modulation EG

3. Vibrato LFO

4. Modulation LFO
Note that DLS1 does not include the modulation LFO. Instead, the

Vibrato LFO can be used as either a frequency control or an

amplitude control, with the appropriate scaling unit for either

frequency or amplitude.
Envelope generators have the form shown below.

Sustain

Delay

Attack

Release

Hold

Decay

Envelope out

Figure 2 - Envelope Generator

The EG is a constant-rate type with the peak output normalized to

[0,1]. Sustain is specified as a percentage of peak output. Rates are

specified in time cents (explained below). DLS1 does not include the
delay or hold segments, using a typical ADSR instead, and the two

values are set to 0.

LFO generators are sine wave oscillators, normalized to [-1,+1],
with the output passed through a gate. The LFO delay prevents

applying vibrato to the attack portion of the sound.

6 Sampler

LFO frequency

LFO Delay

LFO out

Figure 3 - LFO

Wavetable Selection

Wavetable selection is made based on a combination of MIDI values.

Bank (CC0)

Sound
Bank

Program

Note-on Key #

Note-on Velocity

wavetable (zone/region)

A sample may span multiple key and/or velocity values, indicated
by low-key, high-key, low-velocity, and high-velocity settings in the

sound bank. The range of notes is called a zone or region. When a

sound bank instrument contains multiple zones that match a key and
velocity combination, the synthesis structure shown above must be

replicated for each zone and the outputs summed to produce the final

amplitude value.

The wavetable may be looped or non-looped. For a non-looped
table, the table is scanned once from beginning to end. For a looped

table, the portion of the table prior to the loop start point is played

through once, then the oscillator cycles over the samples between
loop start and loop end.

The same sample data may be used for different zones, and may

have different start and end loop points for each zone.

Stereo, or other multi-channel recordings, are produced by playing
multiple zones with each zone panned appropriately. This allows for

simulated stereo as well as a stereo recording. Note that this makes all

wavetables single channel inherently, and is different from the
interleaved samples found in WAV files. This is to be expected since

single channel wavetables are required if the wavetable phase

increment is to work properly.

BasicSynth 7

Example Code

The Example09a program implements an example MIDI sequencer
using SF2 or DLS sound banks.

BasicSynth Library

The GMPlayer and SFPlayerInstr classes implement instruments that
play sound banks, either SoundFont or DLS files.

The SFPlayerInstr class uses a separate envelope generator and

ignores the articulation and modulation information from the sound
bank. This instrument will respond to real-time frequency changes

through the Param() function, changing zones as needed. In order to

avoid discontinuities, it performs a cross-fade between samples.This
instrument also includes an FM capability, local LFO, and pitch bend.

The GMPlayer class uses the MIDI bank and program messages to

select the sound. Only the bank and program numbers are settable

through the Params function. It assumes the sound bank implements
the GM specification for instrument definition.

Files:

Src/Instruments/SFPlayer.h

Src/Instruments/SFPlayer.cpp

Src/Instruments/GMPlayer.h

Src/Instruments/GMPlayer.cpp

